2 research outputs found

    A novel deliberative multicriteria evaluation approach to ecosystem service valuation

    Get PDF
    Although efforts to address ecosystem services in decision making have advanced considerably in recent years, there remain challenges related to valuation. In particular, conventional economic approaches have been criticized for their inability to capture the collective nature of ecosystem services, for their emphasis on monetary metrics, and the difficulty of assessing the value of ecosystem services to future generations. We present a deliberative multicriteria evaluation (DMCE) method that combines the advantages of multicriteria decision analysis with a deliberation process that allows citizens and scientists to exchange knowledge and evaluate ecosystem services in a social context. Compared with previous applications we add the following: (i) a choice task that can be expected to lead to a more reliable assessment of trade-offs among ecosystem services, and (ii) an explicit consideration of the future by both presenting specific socioeconomic scenarios and asking participating citizens to serve as “trustees” for future generations. We implemented our DMCE framework with 11 panels of residents of the upper Merrimack River watershed in New Hampshire with the goal of assessing the relative value of 10 different ecosystem services in the form of trade-off weights. We found that after group deliberation and expert scientific input, all groups except one were able to reach internal consensus on the relative value of these ecosystem services. Additionally, the pattern of trade-off weights across groups was reasonably similar; there was no statistically significant effect of the specific future scenarios that were presented to the groups. Results of a survey given to participants after the deliberative process revealed that most felt that their opinion during the deliberation was heard by the others and that they were influential on the outcome. Further, the vast majority were satisfied with the outcome of the deliberation. We conclude by discussing the strengths and limitations of our framework at an operational level

    A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change

    Get PDF
    Accurate quantification of ecosystem services (ES) at regional scales is increasingly important for making informed decisions in the face of environmental change. We linked terrestrial and aquatic ecosystem process models to simulate the spatial and temporal distribution of hydrological and water quality characteristics related to ecosystem services. The linked model integrates two existing models (a forest ecosystem model and a river network model) to establish consistent responses to changing drivers across climate, terrestrial, and aquatic domains. The linked model is spatially distributed, accounts for terrestrial–aquatic and upstream–downstream linkages, and operates on a daily time-step, all characteristics needed to understand regional responses. The model was applied to the diverse landscapes of the Upper Merrimack River watershed, New Hampshire, USA. Potential changes in future environmental functions were evaluated using statistically downscaled global climate model simulations (both a high and low emission scenario) coupled with scenarios of changing land cover (centralized vs. dispersed land development) for the time period of 1980–2099. Projections of climate, land cover, and water quality were translated into a suite of environmental indicators that represent conditions relevant to important ecosystem services and were designed to be readily understood by the public. Model projections show that climate will have a greater influence on future aquatic ecosystem services (flooding, drinking water, fish habitat, and nitrogen export) than plausible changes in land cover. Minimal changes in aquatic environmental indicators are predicted through 2050, after which the high emissions scenarios show intensifying impacts. The spatially distributed modeling approach indicates that heavily populated portions of the watershed will show the strongest responses. Management of land cover could attenuate some of the changes associated with climate change and should be considered in future planning for the region
    corecore